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Practical problems so~aetimes require the recoustruetion of the continuous flight trajectory of an object from the results of 
coordinate measurements performed continuously or at discrete times, with errors. Here it is required to minimize the deviation 
of the reconstructed trajectory from the measured trajectory, also using available restrictions on the linear acceleration of the 
object. This paper presents a statement of the problem and a method of solving it. An example is given. 

1. STATEMENT OF THE P R O B L E M  

Suppose that a material point is acted upon by a controlling acceleration u(t) so that it performs one- 
dimensional motion described by the equations 

= y ,  = u ( 1 . 1 )  

where x is the coordinate and y the velocity of the point. The acceleration u(t)  is constrained by the 
condition 

I u(t) I <~ D (1.2) 

where D is a eoustzmt. Measurements of the coordinate x(t)  are performed during the interval t ~ [0, T], 
the results of the measurements being denoted by h(t).  It is required to reconstruct the trajectory of 
the object, i.e. to find a ftmctionx(t) in the interval t ¢ [0, T] so that constraint (1.2) is satisfied and the 
deviation x(t) - h O  ) is in some sense minimized. 

The problem e~a be formalized as an optimal control problem in the following way. 
It is required to determine the control u(t)  which minimizes the integral functional 

T 
J = ! I l p ( t ) ( x - h ( t ) ) 2 + l M u 2 ] d t  (1.3) 

Here p(t) I> 0 is a weight function, M > 0 is some initially undetermined constant, to be chosen later 
using the acceleral~ion constraint (1.2). In (1.3) the function x(t)  is related to the control u(t)  by the 
differential equations (1.1). The value of thex coordinate at the initial and final instants t = [0, T] are 
not assumed to be fixed, i.e. we have a problem with free end-points. 

It is natural to specify the weight function p(t) to be inversely proportional to the square of the mean- 
square error of the measurement of the coordinate x(t).  If the trajectory is reconstructed from discrete 
readings hk = h(tk) at the instants tk, k = 0 , . . . ,  N ,  to = 0 < tl < . . .  < tN = T, made with mean square 
errors ok, then the function p(t) is given by the formula 

p(t)=pkS(t-t~) , pk=I/o~ (1.4) 

where 8(.) is the D[rac 8-function. We remark that to reconstruct a multidimensional trajectory the above 
problem must be ~lved independently for each spatial variable. 
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2. T H E  O P T I M A L  C O N T R O L  P R O B L E M  

To determine the optimal trajectoriesx(t) and accelerations u(t) which minimize functional (1.3), we 
use Pontryagin's maximum principle. In our case the Hamiltonian function is 

H = ¥ , y  + ¥2u + ~ ¥ 0 [ P ( t ) ( x -  h(t)) 2 + Mu 2 ] (2.1) 

From this we obtain equations for the adjoint variables 

V~ = -OH / Ox = -¥0P( t ) (x  - h(t)), ~2 = -OH / Oy = -lq/l, ~/0 ---- 0 (2.2) 

Because both ends of the trajectory are free, the transversality conditions have the form 

W;(0) = wi(T) = 0, i = 1, 2, ¥0 ~ -1 (2.3) 

When ¥0 = -1  the function H defined by (2.2) reaches its maximum in u at the critical point, i.e. 
when OH/Ou = ~2 - Mu = O. 

From this we obtain 

u = ~/2/M (2.4) 

Substituting (2.4) into system (1.1) and using (2.2), we find that the optimal trajectory is given by the 
set of  equations 

k = y, ~ = W2 / M, W2 =-WI ,  ~z = p ( t ) (x -  h(t)) (2.5) 

with boundary conditions (2.3). After solving this boundary-value problem the optimal control is found 
from expression (2.4). 

3. D I S C R E T E  M E A S U R E M E N T S  

We will consider in more detail the discrete-measurement case which is important for practical appli- 
cations. System (2.5) has an analytic solution when the function p(t) is given by expression (1.4). Indeed, 
in the interval (tk, tk+l), k = 0 , . . . ,  N -  1, i.e. between the instants when measurements are made, the 
right-hand side of  the last equation in (2.5) vanishes, and system (2.5) is easily integrated 

x = x ;  v2+k vi'  y=y;  + . 
2M 6M M 2M 

¥1+k ,g, 
v 2  = - - -M--  V ,  = 

(3.1) 

Here  x = t - t,, and x+,, Y+,, ¥~k, ¥~k are the values of the corresponding variables at the instant t = 
t,  + 0 immediately after the kth measurement. From (3.1) we conclude that in the interval (tk, tk+l) 
the optimal trajectoryx(t) is the cubic spline. 

The trajectory transition at the instant tk is given by jump conditions which follow from (2.5) and 
(1.4) 

x ~ = x ~ ,  Y~=Yk,  V~k=V2~, V~*=Vl t+Pk(xk- -hk)  (3.2) 

Here  x,, Yk, ¥1k, W2~ are values of the corresponding variables at the instant t = t, - 0 just before the 
kth measurement. Thus, at the instant of measurement, either the third time derivative of the coordinate 
or the first derivative of  the control is discontinuous; the other variables remain continuous. 

Combining (3.1) and (3.2), we obtain the transformation Ok: R 4 ~ R 4 governing the values of all 
variables at the instant t = t,+l - 0 in terms of  the values at the instant t = tk - 0 

-•M VLt+I + V2k q~2 ~/l,k+i q~3k, Yk+l "~" Yk + qgk -- "C2 
xt+I=xt+YkXk 2M t 6M 2M (3.3) 
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Wi,k+l Xt ' YLt+l = V i i  +Pk(Xk-ht )  V'2,k+l = ~tl/2t - M 

Here and below xk = tk+l - -  tk, k = 0 , . . . ,  N -  1. We rewrite (3.3) in matrix form 

z,+l = Akz t  + bk, k = 0 ..... N -  1 (3.4) 

Here zs = (xs, y~ ¥:zs, Yts) r, s = 0 , . . . ,  N, the symbol T denotes transposition and we have introduced 
the notation 

1 -  "t p 
6M t 

2 

At = _ X~ Pt 
2M 

- xiPk 

Pk 

~k 

1 

0 

0 

2M 6M 

x__~_ t 'c~ 

M 2M 

1 -x  k 
0 1 

= 3-ff 
'gt 
-1 

0d'k (3.5) 

Similarly, we introduce the mapping OSk: R 4 ~ R 4 corresponding to the transformation (3.2) and write 
it in matrix form 

zZ=A¢z +bL k = o  . . . . .  N U 10o01 10 1 0 0 0 
A~= 0 1 0 ' b~= 0 

Ok 0 0 1 -pkhk 

(3.6) 

In order to find the optimal trajectory and control it is sufficient to determine the values of all 
components of  the vector z0 at the instant to - 0. The values of the coordinate and control at all instants 
t = tk - 0 and t = tt: + 0, k = 0 . . . .  , N are then reproduced using mappings (3.4) and (3.6), while the 
values at the intemtediate ins tan t s  t ~ (tk, tk+l) are determined using formulae (3.1). 

It would appear that the value of z0 can be determined by the following simple method. Find the 
map 

• = ~ o  ON_I o...o Oo (3.7) 

turning the initial point z0 into the final point zu. To determine variables satisfying boundary conditions 
(2.3) it is necessary to solve the system of linear equations 

÷ 
zN = O(Zo) (3.8) 

Here two components for each of the vectors z~v and zo are  known: ~ , 1  = ~¢2 = ~Ol = ¥02 = 0. Thus 
the problem of finding z0 reduces to the algebraic operation of matrix multiplication in the calculation 
of the explicit form of the map (3.7) and to subsequent solution of the linear system of equations (3.8). 

However, this simplest method fails because of fundamental numerical difficulties. 

The problem is thai: for all k the matrixAk from (3.5) has two eigenvalues with moduli greater than unity. The 
eigenvalues k of the matrixAk are governed by the characteristic equation 

p ( ~ . ) = ~ 4 + 0 ¢ 1 6 - 4 ) ~ 3 + ( 2 ~ 1 3 + 6 ) ~ 2 + ( ~ 6 - 4 ) ~ + 1 = 0 ,  i¢= ptx3/M >0 (3.9) 

This equation is reciprocal, and its roots are positioned symmetrically with respect to the unit circle. They would 
only fie on the unit chele itself when g -- 0, that is impossible (see (3.9)). Hence there are always two roots with 
modulus greater than unity. The presence of these eigenvalues leads to instability and to an exponential increase 
in the matrix coefficients obtained when computing mapping (3.7), and an exponential increase in the numerical 
errors also. All this makes calculation imposs~le even for fairly smallN. We must therefore abandon the calculation 
of mapping (3.7) and ase another method. 
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4. MATRIX PIVOTAL CONDENSATION 

We shall use the matrix pivotal condensation method [1]. We rewrite the matrices and vectors that 
occur in transformation (3.4) in the following partitioned form, together with the transformation itself 

F~L~+ ̀ = A~i~, ~ + A~F~2 k + bl~, F~2,k+l = A~IF~I ~ + A~2F~2 ~ + b ~  

(4.1) 

Here A o and b/~ are (2 x 2)-matrices and 2-vectors, corresponding to vectors ~ and ~ .  We make 
the substitution 

~2~ =Q~lk  +q~, k =0  ..... N (4.2) 

in (4.1), where Qk and qk are an initially unknown (2 x 2)-matrix and 2-vector. We obtain 

+ A, 20.d ,k + (4.3) 
Qk+,~l.t+~ +qt+l = ( A~! + Ak2Qk )~,t + A~2qi + b2k 

We now substitute ~1¢~+1 from the first equation in (4.3) into the second, and equating the coefficients 
of the ~lk and the free terms on the left- and fight-hand sides, we obtain the system 

Qk+, ( AI k, + A~2Qk ) = A~, + A~2Q k 
(4.4) 

Qk+l(A~2qk +blk)+qk+t = A22qk +b2~, k=O ..... N - I  

Note that if the matrices Qk, Qk+l and vectors qk, qk+l satisfy system (4.4), the equation obtained 
from (4.3) after eliminating ~1~+1 is satisfied identically by ~ .  Relations (4.4) are recurrence relations 
connecting the Qk, qk with the Qk+l, qk+l. 

We now choose values for QN, qt¢ so that boundary condition (2.3) at the right end of the trajectory 
is satisfied identically by any ~v.  We recall that according to (4.1) the values ~ ,  ~z~ correspond to values 
of the coordinates and adjoint variables at the instant tN-  0. Hence, in order to satisfy the boundary 
condition ~2(t~r + 0) ~ 0, it is necessary to apply transformation (3.6) to the vectors giN, ~v.  We obtain 

I ° °11 I ° I ~ 2 ( t ~ + 0 ) :  PN 0 ~llv+~2t~- -=0 (4.5) p~h# 

We substitute the expression for ~z~, given by the substitution (4.2), into (4.5), and in the resulting 
relation we equate the coefficients of ~ v  and the free terms to zero. We obtain 

ii0 011 ii01[ (4.6) QN = _p~ 0 ' q~ = pNhn 

From relations (4.4) we obtain recurrence formulae expressing Qk, qk in terms of Q~+I, qk+l 

Qk = (A~ -Qk+lA~2)k -I (Q~+lAk Akl), q~=(A~2-Qk+lA12)k -I (Q~+lblk - bz~ +qk+,) (4.7) 

The first equation in (4.7) gives the non-linear relation between the matrices Q~ and Qk+l, while the 
second gives the linear relation between the vectors qk and qt~+~. 

Using (4.7) and initial conditions (4.6) we sequentially obtain the matrices QN-1, - • •, Q0 and vectors 
q~-t . . . .  , q0- Having computed Q0 and q~ and then, using substitution (4.2) and boundary condition 
(2.3) at the initial instant (~20 -ffi- 0), we obtain the initial point of the optimal trajectory 

I oll 
Y0 = 910 = -Qolq0 (4.8) 
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The initial value z0 = (~10~20) T is thus determined by relation (4.8). The optimal trajectory is now 
easily reconstructed at the nodes tk using expressions (4.2) and the first expression in (4.3), and at the 
intermediate points using (3.10). 

For a final solution of the problem it remains to choose the parameter M so that the acceleration 
condition (1.2) is satisfied. The maximum acceleration Umax along the optimal trajectory is a function 
of M, and Umax ~ *° as M--~ 0 and Umax ~ 0 as M ~ 0-. Using a trial method it is easy to find numerically 
the value of M for which I Umax [ = D. 

Thus the solution of the problem of reconstructing the trajectory in terms of measurement data reduces 
to calculating the matrices Qk and vectors qt, by recurrence formulae (4.7) followed by a calculation of 
the trajectories from formulae (4.2), (4.3) and (3.10), together with the selection of the parameter M. 
We note that the most onerous part of this procedure--the calculation of the matrices Qk using the 
first (non-linear) relation in (4.7)--does not depend on the results of measurements of hi, occurring in 
the vectors bk in etecordance with (3.6). Hence the matrices Qk can be calculated in advance of the 
measurements. Wlaen different sets of measurements are performed with the same errors, there is no 
need to repeat the calculation of the Qk, which is performed only once. 

The algorithm described for solving the trajectory reconstruction problem was implemented on a 
computer. Calculations showed the effectiveness and high accuracy of the method. 

5. STABILITY OF THE PIVOTAL C ONDE NSAT ION M E T H O D  

The pivotal condensation method described in Section 4 is similar to the matrix pivotal 
condensation method described in [1, pp. 106-111]. However, a check showed that the sufficient 
conditions for the well-posedness and stability of the algorithm that were obtained in [1] are not satisfied 
in our case. We will show that those sufficient conditions can be widened considerably in cases when 
theAk matrices do not depend on the number k, i.e. whenAk = A, where A is a constant matrix. 

We shall say that the pivotal condensation method is well-posed for given end conditions Q~ q~ in 
reverse time, if for ;dl k = N- l ,  . . . .  0 the matrices Qk and vectors qk are uniquely defined. From formulae 
(4.7) it obviously follows that the condition 

det(A22 - Qk+lA12) ~ 0, k = N -  1 ..... 0 (5.1) 

is necessary and sufficient for the well-posedness Below we shall omit the superscript k in the matrices 

AO~¢ e k  shall say thal~ the pivotal condensation method is asymptotically stable for end condition Qlv in 
reverse time if the first of the mappings (4.7) has an asymptotically stable fixed point Ok+l = Ok = Q* 
and the matrix Q~r lies in the domain of attraction of this point, and the second mapping in (4.7) has 
an asymptotically stable fixed point qk+l= qk = 0 if bu,, bek are set equal to zero. Moreover, we shall 
require the first m~Lpping in (4.3) to have an asymptotically stable fixed point ~lj,+l -- ~u, -- 0 ifqk, b~ 
are set equal to zero. 

We note that the first two conditions guarantee the computational stability of the determination of 
the condensational ,~,quences of matrices Qk and vectors qk, and the last conditions guarantee the stability 
of the reconstruction of the trajectory. 

In a similar way o,ne can define the well-posedness and asymptotic stability of the pivotal condensation 
method in forward time. 

Before obtaining: sufficient conditions for the well-posedness and asymptotic stability of the pivotal 
condensation method we will first derive transformation formulae for the matrices Qk and vectors qk 
for a linear change of variables in phase space. We consider the mapping 

• k ( z )  = AZ + b k: R 4 - -*  R 4, k ---- 0 . . . . .  N - 1 ( 5 . 2 )  

and the associated mapping of the pivotal condensation method (4.4). We make the linear change of 
variables 

s 

z = Cz', • k = CO k (5.3) 

defined by the non-degenerate matrix C. Here and below, variables without a prime are old, and primed 
variables are new. We rewrite (5.3) in partitioned form 
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~ = C ~ , ~ I + C ~ 2  C =  C~l C~ , z =  (5.4) 

With this change of variables the mapping (5.2) becomes 

dP'~(z')=A'z'+bt, A'=C-~AC, b'~=C-tbk, k = 0  ..... N - 1  (5.5) 

We now derive transformation formulae for Q~,qk. We shall require them to satisfy the relations 

~2~ =Qk~;~ +qk, k = 0  ..... N (5.6) 

which are similar to (4.2). Substituting (5.6) into (5.4), and then into the expressions obtained for ~a 
and ~z~ in {4.2), we have 

(5.7) 

Further, since the Q'k, q~ do not depend on the vector ~k (in the same way that Qk, qk do not depend 
on ~u~), we equate the coefficients of ~ and the free terms on the left- and right-hand sides of (5.7). 
As a result we obtain the required transition formulae 

Qk(Ctl + C12Qk )-(C2, +C22Q'k) =0, qt, =(C22 -QI, Ci2)q'~ (5.8) 

As well as (5.8), we obtain formulae connecting Q~+I, q~+l with Q~, q~, derived in the same way as (4.7) 
for the old variables 

Q~=(A~2_ ' ' -i ' ' Qk+IAI2) (Q~+IAII - A'21) 

q ;  = (A2 2 ' , i ~ - Qk+lAl2)- (Pk+lblk - b2k + q~+l ) 
(5.9) 

We now assume that the change of variables (5.3) reduces matrixA to Jordan form. 
In the general situation the eigenvalues ~1 . . . . .  2~ of the matrixA are different and the matrixA' is 

diagonal. HenceAi2 = A[a = 0. Equations (5.9) can therefore be rewritten in the form 

Q~ =(A'22 )-I Q'k+,Ail, qk =(a'22)-'(Q~+lbll, -b'2k +qk+l) (5.10) 

To fix our ideas we take 

rl °l ° I All  = 0 ~2  ' A22 = 0 ~ 4  

The relation between the matrices Q~ and Qk+l is now linear, unlike relations (4.7). It is obvious that 
the pivotal condensation method in the new variables is always well-posed for any starting conditions 
Q'Nq'~ and any number of iterations N if 7q ~ 0, L4 ~ 0. Moreover, the mapping determined by the first 
formula in (5.10) has a unique fixed point Q. = 0 which is globally asymptotically stable when max(] 7q I, 
I k2 [) < min(] 7% I, 17q [) and unstable if the opposite inequality is satisfied. The map determined by 
the second formula in (5.10) has, if one sets b~ and b~k equal to zero, a fixed point q. = 0 which is 
globally asymptotically stable when min(I k3 I, 17q} ) > 1. The reconstructed trajectory is then generated 
by formula (5.6) together with 

~i,k+, = A;l~ik +b,k (5.11) 

which is obtained in the same way as the first formula in (4.3). If one equates b~, to zero, mapping 
(5.11) has a fixed point ~. = 0 which is globally asymptotically stable when max(IXl [ , IL2[) < 1. 

The following theorem has therefore been proved. 

Theorem 1. Suppose that the eigenvalues of the matrixA defining the mapping (5.2) are distinct, and 
two of them lie inside, and two outside, the unit circle. Then, in variables in which the matrix A has 
diagonal form, and its eigenvalues are arranged in order of increasing modulus (IX1[ <~ I~ l  < 1 < 
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[ ~ [ ~< I ~ [  ), the pivotal condensation method is well-posed and asymptotically stable in reverse time 
for all initial conditions. 

We note that from formulae (5.10)-(5.11) one can similarly obtain sufficient conditions for well- 
posedness and a~.rmptotic stability of  the pivotal condensation method in direct time, in the form 
min(IX, I, I 1)> 1 > max (1 1, IX41). 

Theorem 2. Let ~Lhe conditions of  Theorem 1 be satisfied. If the starting value of the matrix Q2vis such 
that 

detlczz-QNCzzll o, Oetl[c ,+C =Qq O (5.12) 

then for an arbitrary value ofq~v the pivotal condensation method is well-posed and asymptotically stable 
in reverse time for the original variables. 

Proof. For specified values of QN and qn the sequences Qk and qk can be constructed not only from 
formulae (4.7), bm also by means of the change of  variables (5.3) by formulae (5.8) and (5.10), as shown 
in the diagram 

(4.7) (4.7) 

QN, qN ---> Q,v-1, qN-i ---)'"" ~ Qo, qo 

(5.8) ,1, 1" (5.8) 
QN, qN-"~Qml, q'lv-I --'~ ""-"-> Qo.qo 

(5.10) (5.10) 

From relation (5.8) with k = N and k = 0 we obtain the following conditions of solvability. The 
transition from Q~r, qlv to Q'Jv, q~, is defined in det C22 - QM~712] ~ 0, while the transition from Q~, qfi to 
Q0, q0 is defined if det [[Cn - Ca2Q~ ~ 0. Because the matrix Q~I is necessary to determine the initial 
conditions x0, Y0, Q0 must be non-degenerate. It follows from (5.8) that the necessary and sufficient 
condition for this iis det IIcll + c12Q-GII ~ 0, det [IC2i + C2 QGll o. Theorem 2 is proved. 

We will now apply the results obtained to the matrixA defined by expression (3.5) with xt, = *, Pt, = 
p. Because the characteristic equation (3.9) of A is reciprocal, the eigenvalues of  this matrix are distinct 
and arranged symmetrically with respect to the unit circle. Hence the conditions of Theorem 1 are 
satisfied. By Theorem 2 the pivotal condensation method is well-posed and asymptotically stable if 
inequalities (5.12) are satisfied for finite values of Q.N, qN from (4.6). The validity of these inequalities 
can always be established numerically for chosen values of the system parameters % p M. We note that 
the matrix Q~ can be assumed to be zero after a relatively small number of iterations N, because its 
coefficients are of order O(d v) where e = [ X2 [ / [ X3 [ < 1. In particular, for the example considered below 
we have N = 40, E < 1/2. Hence we can put Q~ = 0 in (5.12) with a high degree of  accuracy, and then 
verify the conditions 

detllc22 - QN Ct2 II * 0, detllC H 1[ * 0, det uC2, II ;~ 0 

This verification was performed numerically in the example to be considered. 

6. E X A M P L E  

We shall consider a model problem for the motion of a helicopter, which from an initial state of horizontal flight 
performs a manoeuvre to increas¢ its height. We assume that the horizontal component of its velocity is constant 
both in magnitude mid direction. The vertical motion is the result of a controlling acceleration. Measurements of 
the height h are made at intervals of "~ = I s. The manoeuvre takes 15 s and the total time of the motion is 25 s. 
Thus N ffi 25. The qu~antity o is taken to be 2 m. The result of smoothing the trajectory, according to the alg~ithm 
described above, when the absolute magnitude of the controlling acceleration does not exceed D = 2 m/s" (see 
(1.2)) is shown in Fig. 1. Time is shown horizontally in seconds and the height vertically in metres. The small circles 
show the measured values, and the continuous curves shows the smoothed trajectory. To illustrate the dependence 
of the degree of smoothneas of the trajectory on the magnitude of the permitted acceleration, the same original 

2 trajectory was smoothed with a maximum permissible acceleration of 30 m/s. The result is shown by the dashed 
l ine .  

This work was performed with financial support from the Russian Fund for Fundamental Research 
(93-013-16286) and the International Science Foundation (M4F000). 
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